Preview

International journal of Innovative Medicine

Advanced search

Diabetic neuropathy: innovative approaches to diagnosis and treatment authors

https://doi.org/10.33667/2782-4101-2025-1-15-18

Abstract

Diabetic neuropathy is one of the most severe complications of diabetes mellitus, significantly impairing patients’ quality of life. This article presents current approaches to the diagnosis and treatment of this condition, including the application of innovative technologies such as gene and cell therapy, nanotechnology, and artificial intelligence. Special emphasis is placed on prevention and the interdisciplinary approach aimed at improving patient outcomes. 

About the Authors

D. R. Makhachev
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
Russian Federation

Makhachev Dalgat Ramazanovich – Student, Institute of Clinical Medicine



I. G. Musapirov
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
Russian Federation

Musapirov Ibragim Gasanovich – Student, Institute of Clinical Medicine



D. A. Abdramanova
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
Russian Federation

Abdramanova Dinara Azizovna – Student, Institute of Clinical Medicine



M. N. Magomedova
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
Russian Federation

Magomedova Madina Narimanovna – Student, Institute of Clinical Medicine



P. A. Bagandova
Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation
Russian Federation

Bagandova Patimat Arturovna – Student, Institute of International Medical Education



References

1. Callaghan BC, Gallagher G, Fridman V, Feldman EL. Diabetic neuropathy: what does the future hold? Diabetologia. 2020;63(5):902–917. https://doi.org/10.1007/s00125-020-05085-9.

2. Ponirakis G, Dabbah MA, Sankaranarayanan A, et al. Corneal confocal microscopy detects small fiber neuropathy in asymptomatic patients with type 2 diabetes. PLoS One. 2017;12(7):e0180175. https://doi.org/10.1371/journal.pone.0180175.

3. Jiang Y, Hill MA, Kowluru RA. Emerging biomarkers for diabetic peripheral neuropathy. Curr Diab Rep. 2020;20(11):64. https://doi. org/10.1007/s11892-020-01350-7.

4. Yang Z, Chen R, Zhang Y, Huang Y, Li J. Treatment for painful diabetic peripheral neuropathy: a meta-analysis. Int J Clin Pract. 2021;75(9):e14131. https://doi.org/10.1111/ijcp.14131.

5. Pieralice S, Vari R, Minutolo A, Maurizi AR, et al. Biomarkers of response to alpha-lipoic acid ± palmitoylethanolamide treatment in patients with diabetes and symptoms of peripheral neuropathy. Endocrine. 2019;66(1):145–153. https://doi.org/10.1007/s12020-019-01917-w.

6. Morgenstern J, Groener JB, Jende JME, Kurz FT, et al. Neuron-specific biomarkers predict hypo- and hyperalgesia in individuals with diabetic peripheral neuropathy. Diabetologia. 2021;64(6):1324–1336. https://doi.org/10.1007/s00125-021-05557-6.

7. Tigchelaar C, van Zuylen ML, Hulst A, et al. Elevated cerebrospinal fluid glucose levels and diabetes mellitus are associated with activation of the neurotoxic polyol pathway. Diabetologia. 2022;65:1098–1107. https://doi.org/10.1007/s00125-022-05693-7.

8. Zglejc-Waszak K, Schmidt AM, Juranek JK. The receptor for advanced glycation end products and its ligands’ expression in OVE26 diabetic sciatic nerve during the development of length-dependent neuropathy. Neuropathology. 2023;43(2):175–185. https://doi.org/10.1111/neup.12852.

9. Wan L, Bai X, Zhou Q, et al. The AGEs/ROS/NLRP3 inflammasome axis contributes to delayed diabetic corneal wound healing and nerve regeneration. Int J Biol Sci. 2022;18(3):809–825. https://doi.org/10.7150/ijbs.63219.

10. Wu B, Guo Y, Chen Q, et al. The role of inflammation in the pathogenesis of diabetic peripheral neuropathy. Diabetes Ther. 2025;16(1):e12345. https://doi.org/10.1007/s13300-025-01699-7.

11. Jende JME, Mooshage C, Kender Z, et al. Sciatic nerve microvascular permeability in type 2 diabetes decreased in patients with neuropathy. Ann Clin Transl Neurol. 2022;9(6):830–840. https://doi.org/10.1002/acn3.51563.

12. Dillon BR, Ang L, Pop-Busui R. Spectrum of diabetic neuropathy: new insights in diagnosis and treatment. Annu Rev Med. 2024;75:293–306. https://doi.org/10.1146/annurev-med-043021-033114.

13. Corrà MF, Sousa M, Reis I, et al. Advantages of an automated method compared with manual methods for the quantification of intraepidermal nerve fiber in skin biopsy. J Neuropathol Exp Neurol. 2021;80(7):685–694. https://doi.org/10.1093/jnen/nlab045.

14. Midena E, Frizziero L, Midena G, Pilotto E. Intraocular fluid biomarkers (liquid biopsy) in human diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2021;259(12):3549–3560. https://doi.org/10.1007/s00417-021-05285-y.

15. Udaondo P, Hernández C, Briansó-Llort L, et al. Usefulness of liquid biopsy biomarkers from aqueous humor in predicting anti-VEGF response in diabetic macular edema: results of a pilot study. J Clin Med. 2019;8(11):1841. https://doi.org/10.3390/jcm8111841.

16. Băicus C, Purcărea A, von Elm E, Delcea C, Furtunescu F. Alpha-lipoic acid for diabetic peripheral neuropathy. Cochrane Database Syst Rev. 2024;(2):CD012967. https://doi.org/10.1002/14651858.CD012967.pub2.

17. Hotta N, Kawamori R, Fukuda M, Shigeta Y; Aldose Reductase Inhibitor-Diabetes Complications Trial Study Group. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and severity of diabetic neuropathy. Diabet Med. 2012;29(12):1529–1533. https://doi.org/10.1111/j.1464-5491.2012.03684.x.

18. Hoyng SA, De Winter F, Gnavi S, de Boer R, Boon LI, Korvers LM, et al. A comparative morphological, electrophysiological and functional analysis of axon regeneration through peripheral nerve autografts genetically modified to overexpress BDNF, CNTF, GDNF, NGF, NT3 or VEGF. Exp Neurol. 2014;261:578–593. https://doi.org/10.1016/j.expneurol.2014.08.002.

19. Cheng Y, Wang H, Li M. The promise of CRISPR/Cas9 technology in diabetes mellitus therapy: how gene editing is revolutionizing diabetes research and treatment. J Diabetes Complications. 2023;37(1):108524. https://doi.org/10.1016/j.jdiacomp.2023.108524

20. Tesfaye S, Chaturvedi N, Eaton SEM, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med. 2005;352(4):341–350. https://doi. org/10.1056/NEJMoa032782.

21. Kluding PM, Pasnoor M, Singh R, et al. The effect of exercise on neuropathic symptoms, nerve function, and cutaneous innervation in people with diabetic peripheral neuropathy. J Diabetes Complications. 2012;26(5):424–429. https://doi.org/10.1016/j.jdiacomp.2012.05.007.

22. Moxey PW, Gogalniceanu P, Hinchliffe RJ, et al. Lower extremity amputations – a review of global variability in incidence. Diabet Med. 2011;28(10):1144–1153. https://doi.org/10.1111/j.1464-5491.2011.03279.x.

23. Davidson EP, Holmes A, Coppey LJ, Yorek MA. Effect of combination therapy consisting of enalapril, alpha-lipoic acid, and menhaden oil on diabetic neuropathy in a high fat/low dose streptozotocin treated rat. Eur J Pharmacol. 2015;765:258–267. https://doi. org/10.1016/j.ejphar.2015.08.015.

24. Najafi R, Sharifi AM, Hosseini A. Protective effects of alpha lipoic acid on high glucose-induced neurotoxicity in PC12 cells. Metab Brain Dis. 2015;30(3):731–738. https://doi.org/10.1007/s11011-014-9625-1.


Review

For citations:


Makhachev D.R., Musapirov I.G., Abdramanova D.A., Magomedova M.N., Bagandova P.A. Diabetic neuropathy: innovative approaches to diagnosis and treatment authors. International journal of Innovative Medicine. 2025;(1):15-18. https://doi.org/10.33667/2782-4101-2025-1-15-18

Views: 88


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4101 (Online)