Preview

International journal of Innovative Medicine

Advanced search

POST-STROKE MOTOR IMPAIRMENTS: THE POSSIBILITIES OF INNOVATIVE TECHNOLOGIES AND THE RESULTS OF THE OWN RESEARCH

https://doi.org/10.33667/2782-4101-2022-1-4-10

Abstract

Introduction.The article presents an overview of innovative technologies based on methods sensomotor retraining of the patient using neuromuscular electrical stimulation (NFES) and biofeedback (BFB) as the most promising in the medical rehabilitation (MR) of motor impairment in patients with brain stroke (BS). The results of our own study are also presented.

The aim of the study - an assessment of the effectiveness of a comprehensive rehabilitation program with the inclusion of NFES and stabilometric postural control using the BFB method in patients with after-stroke motor disfunction in the chronic ischemic stroke (IS).

Material and methods. We examined 87 patients (41 women and 46 men) in the chronic IS, mean age 58.4±6.4 years. The stroke duration was 228.59±31.9 days. The main group included 52 patients who, along with the standard treatment regimen, underwent NFES and BFB-stabilometric training. The comparison group consisted of 35 patients whose rehabilitation complex did not include the above methods.

Results and conclusion. Due to comlex rehabilitation with NFES and BFB stabilometric postural training it has been improved the function of walking. The clinical effect was noted 3 weeks after the start of rehabilitation, reaching a maximum by the 5th week. The inclusion of BFB-based methods in the medical rehabilitation leads to earlier motor and social adaptation of the after-stroke patient, restoration of the impairment balance function, which is associated with an increase in neuroplasticity.

About the Authors

E. V. Kostenko
Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the Department of health of the city of Moscow; Pirogov Russian National Research Medical University
Russian Federation

Kostenko Elena Vladimirovna – PhD MD, Professor of the Department of Neurology, Neurosurgery and Medical Genetics Pirogov Russian National Research Medical University, Moscow, Russia; chief Research Officer, neurologist Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the Department of health of the city of Moscow

117997, Moscow, 1 Ostrovityanov St., Tel.: +79057685856



L. V. Petrova
Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the Department of health of the city of Moscow
Russian Federation

Petrova Lyudmila Vladimirovna – PhD, Senior Researcher, Head of the Neurorehabilitation, neurologist

105005, Moscow, 70 Baumanskaya Street; Tel.: +79163940742



A. V. Rylsky
Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the Department of health of the city of Moscow
Russian Federation

Rylsky Alexey Vasilyevich – neurologist

Moscow, 70 Baumanskaya Street; Tel.::+79165850111



References

1. Langhorne P, Coupar F, Pollock A. Motor recovery after stroke: a systematic review. Lancet Neurol. 2009;8(8):741–754. doi:10.1016/S1474–4422(09)70150–4.

2. Berge E, Whiteley W, Audebert H, et al. European Stroke Organisation (ESO) guidelines on intravenous thrombolysis for acute ischaemic stroke. Eur Stroke J. 2021;6(1): I–LXII. doi:10.1177/2396987321989865.

3. Rabadi MH. Review of the randomized clinical stroke rehabilitation trials in 2009. Med Sci Monit. 2011;17(2): RA25-RA43. doi:10.12659/msm.881382ю

4. Tappakhov AA, Konnikova EE, Argunova OG, Nikanorov VN, Dmitrieva NG. Stabilometry in the diagnosis and treatment of acute disorders of cerebral circulation: a pi lot study. Materials of the III Republican Scientific and Practical Conference ‘Improving the Provision of Medical Aid to Patients with Vascular Diseases in the Republic of Sakha (Yakutia)’. 2016;43–46. (In Russ.).

5. Norrving B, Kissela B. The Global Burden of Stroke and Need for a Continuum of Care. Neurology. 2013;80(3 suppl 2):5–12. https://doi.org/10.1212/wnl.0b013e3182762397.

6. Kleim JA, Barbay S, Cooper NR, et al. Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem. 2002;77(1):63–77. doi:10.1006/nlme.2000.4004.

7. Blümle A, Maurer C, Schweigart G, Mergner T. A Cognitive Intersensory Interaction Mechanism in Human Postural Control. Exp Brain Res. 2006; 173(3):357–363. https://doi.org/10.1007/s00221–006–0384-z.

8. Perry J. Gait Analysis: Normal and Pathological Function. Slack Incorporated; Thorofare, NJ, USA: 1992.

9. Chen G., Patten C., Kothari D.H., Zajac F.E. Gait differences between individuals with post-stroke hemiparesis and non-disabled controls at matched speeds. Gait Posture. 2005;22:51–56. doi: 10.1016/j.gaitpost.2004.06.009.

10. Boudarham J., Roche N., Pradon D., Bonnyaud C., Bensmail D., Zory R. Variations in Kinematics during Clinical Gait Analysis in Stroke Patients. PLoS ONE. 2013;8: e66421. doi: 10.1371/journal.pone.0066421

11. Roth EJ, Merbitz C, Mroczek K, Dugan SA, Suh WW. Hemiplegic gait. Relationships between walking speed and other temporal parameters. Am J Phys Med Rehabil. 1997;76(2):128–133. doi:10.1097/00002060–199703000–00008.

12. Alexander LD, Black SE, Patterson KK, Gao F, Danells CJ, McIlroy WE. Association between gait asymmetry and brain lesion location in stroke patients. Stroke. 2009;40(2):537–544. doi:10.1161/STROKEAHA.108.527374

13. Chantraine F, Filipetti P, Schreiber C, Remacle A, Kolanowski E, Moissenet F. Proposition of a Classification of Adult Patients with Hemiparesis in Chronic Phase. PLoS One. 2016;11(6): e0156726. Published 2016 Jun 7. doi:10.1371/journal.pone.0156726.

14. Ambrosini E, Parati M, Peri E, et al. Changes in leg cycling muscle synergies after training augmented by functional electrical stimulation in subacute stroke survivors: a pilot study. J Neuroeng Rehabil. 2020;17(1):35. Published 2020 Feb 27. doi:10.1186/s12984–020–00662-w.

15. Bowden Mark G., Clark David J., Kautz Steven A. Evaluation of Abnormal Synergy Patterns Poststroke: Relationship of the Fugl-Meyer Assessment to Hemiparetic Locomotion. Neurorehabilitation and Neural Repair. 2009;24(4):328–337. doi: 10.1177/1545968309343215.

16. Tan CK, Kadone H, Watanabe H, Marushima A, Yamazaki M, Sankai Y, et al. Lateral symmetry of synergies in lower limb muscles of acute post-stroke patients after robotic intervention. Front Neurosci. 2018;12:1–13. doi: 10.3389/fnins.2018.00276

17. Hara Y. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients. J Nippon Med Sch. 2008;75(1):4–14. doi:10.1272/jnms.75.4.

18. Kern H., Salmons S., Mayr W., Rossini K., Carraro U. Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve. 2005;31:98–101. doi: 10.1002/mus.20149.

19. Sheffler L.R., Chae J. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve. 2007;35:562–590. doi: 10.1002/mus.20758.

20. Monte-Silva K., Piscitelli D., Norouzi-Gheidari N., Batalla M. A.P., Archambault P., Levin M. F. Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Post-stroke Hemiplegia: A Systematic Review and Meta-Analysis. Neurorehabil. Neural Repair. 2019;33:96–111. doi: 10.1177/1545968319826053.

21. Marotta N., Demeco A., Inzitari M. T., Caruso M. G., Ammendolia A. Neuromuscular electrical stimulation and shortwave diathermy in unrecovered Bell palsy: A randomized controlled study. Medicine. 2020;99: e19152. doi: 10.1097/MD.0000000000019152.

22. Rushton D. Functional electrical stimulation and rehabilitation: A hypothesis. Med. Eng. Phys. 2003;25:75–78. doi: 10.1016/S1350–4533(02)00040–1.

23. Chae J, Sheffler L, Knutson J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top Stroke Rehabil. 2008;15(5):412–426. doi:10.1310/tsr1505–412.

24. Stein C, Fritsch CG, Robinson C, Sbruzzi G, Plentz RD. Effects of Electrical Stimulation in Spastic Muscles After Stroke: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stroke. 2015;46(8):2197–2205. doi:10.1161/STROKEAHA.115.009633.

25. Huber J, Kaczmarek K, Leszczyńska K, Daroszewski P. Post-Stroke Treatment with Neuromuscular Functional Electrostimulation of Antagonistic Muscles and Kinesiotherapy Evaluated with Electromyography and Clinical Studies in a Two-Month Follow-Up. Int J Environ Res Public Health. 2022 Jan 15;19(2):964. doi: 10.3390/ijerph19020964. PMID: 35055785; PMCID: PMC8775942.

26. Sharif F, Ghulam S, Malik AN, Saeed Q. Effectiveness of Functional Electrical Stimulation (FES) versus Conventional Electrical Stimulation in Gait Rehabilitation of Patients with Stroke. J Coll Physicians Surg Pak. 2017;27(11):703–706.

27. Hong Z, Sui M, Zhuang Z, et al. Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review. Arch Phys Med Rehabil. 2018;99(5):1011–1022.e1. doi:10.1016/j.apmr.2017.12.019.

28. He YL, Gao Y, Fan BY. Effectiveness of neuromuscular electrical stimulation combined with rehabilitation training for treatment of post-stroke limb spasticity. Medicine (Baltimore). 2019;98(39): e17261. doi:10.1097/MD.0000000000017261.

29. Sentandreu-Mañó T., Tomás J.M., Ricardo Salom Terrádez J. A randomised clinical trial comparing 35 Hz versus 50 Hz frequency stimulation effects on hand motor recovery in older adults after stroke. Sci. Rep. 2021;11:9131. doi: 10.1038/s41598–021–88607–8.

30. Billian C., Gorman P. H. Upper extremity applications of functional neuromuscular stimulation. Assist. Technol. 1992;4:31–39. doi: 10.1080/10400435.1992.10132190

31. Eraifej J, Clark W, France B, Desando S, Moore D. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst Rev. 2017;6(1):40. Published 2017 Feb 28. doi:10.1186/s13643–017–0435–5.

32. Sabut S.K., Sikdar C., Kumar R., Mahadevappa M. Functional electrical stimulation of dorsiflexor muscle: Effects on dorsiflexor strength, plantarflexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation. 2011;29:393–400. doi: 10.3233/NRE-2011–0717.

33. Stanton R, Ada L, Dean CM, Preston E. Biofeedback improves performance in lower limb activities more than usual therapy in people following stroke: a systematic review. J Physiother. 2017;63(1):11–16. doi:10.1016/j.jphys.2016.11.006.

34. Molier BI, Van Asseldonk EH, Hermens HJ, Jannink MJ. Nature, timing, frequency and type of augmented feedback; does it influence motor relearning of the hemiparetic arm after stroke? A systematic review. Disabil Rehabil. 2010;32(22):1799–1809. doi:10.3109/09638281003734359.

35. Sigrist R, Rauter G, Riener R, Wolf P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon Bull Rev. 2013;20(1):21–53. doi:10.3758/s13423–012–0333–8.

36. Wolf SL, Binder-MacLeod SA. Electromyographic biofeedback applications to the hemiplegic patient. Changes in lower extremity neuromuscular and functional status. Phys Ther. 1983;63(9):1404–1413. doi:10.1093/ptj/63.9.1404.

37. Liu J, Kim HB, Wolf SL, Kesar TM. Comparison of the Immediate Effects of Audio, Visual, or Audiovisual Gait Biofeedback on Propulsive Force Generation in Able-Bodied and Post-stroke Individuals. Appl Psychophysiol Biofeedback. 2020 Sep;45(3):211–220. doi: 10.1007/s10484–020–09464–1. PMID: 32347399; PMCID: PMC7447533.

38. Genthe K, Schenck C, Eicholtz S, Zajac-Cox L, Wolf S, Kesar TM. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top Stroke Rehabil. 2018;25(3):186– 193. doi:10.1080/10749357.2018.1436384.

39. Skvortsov D.V. Clinical analysis of movements. Gait analysis: Publishing house NPC – ‘Stimulus’, Ivanovo, 1996.– 344 p.

40. Skvortsov DV, Kaurkin SN, Ivanova GE. A Study of Biofeedback Gait Training in Cerebral Stroke Patients in the Early Recovery Phase with Stance Phase as Target Parameter. Sensors (Basel). 2021;21(21):7217. Published 2021 Oct 29. doi:10.3390/s21217217


Review

For citations:


Kostenko E.V., Petrova L.V., Rylsky A.V. POST-STROKE MOTOR IMPAIRMENTS: THE POSSIBILITIES OF INNOVATIVE TECHNOLOGIES AND THE RESULTS OF THE OWN RESEARCH. International journal of Innovative Medicine. 2022;(1):4-10. https://doi.org/10.33667/2782-4101-2022-1-4-10

Views: 631


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2782-4101 (Online)